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Introduction

In the last decade, social scientists have shown growing interest in the formal
analysis of social institutions.1 Economists, sociologists, political scientists and
philosophers of science have contributed to this formal and mathematical mod-
elling of institutions (their emergence, dynamic properties and stability).

At the same time computer simulations of social phenomena shifted from
‘traditional’ numerical simulations based on mathematical equations to agent-
based, discrete event simulations. This new computational approach to mod-
elling and simulating social phenomena has given birth to several new fields of
research such as computational organization theory (Prietula and Carley, 1994),
(Prietula, Carley and Gasser, 1998), computational sociology (Bainbridge et al.,
1994), computational anthropology (Doran, 1995, Dean at el., 1998), compu-
tational social psychology (Nowak and Vallacher, 1998) and last but not least,
computational economics (Tesfatsion, 1998).

The aim of this paper is to contribute to this new research agenda by adding
computational institutional analysis or briefly CIA2 to the list of computational
social fields. As we envision it, CIA combines the formal modelling of social
institutions with new methods of doing agent-based computational social sci-
ence. The present paper is a step in this direction. We take up an economic,
game theoretical model and investigate its potential for the understanding of
institutions by means of simulation.

1The formal approach based on deductive reasoning is sometimes opposed to the descrip-
tive approach of the ‘old’ institutionalist school of the Commons variety (Commons, 1934).
However, such an opposition between a theoretically driven ‘new’ institutionalism and an
‘anti-theoretic’ old institutionalism does not seem adequate; see (Hodgson, 1998) who stresses
the early institutionalists’ concern for theoretical issues.

2This field of research has something in common with its more famous counterpart.
Computational Institutional Analysis is at the center of economic analysis, it is (artificial)
intelligence based and, finally, it is agent based. Needless to say, we do not pursue the same
objectives.
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One way of theorizing about social order is by classifying actors in terms
of the types of the actions they perform. Going back to a very basic, almost
‘prehistoric’ level, three broad types of of activities which seem to be promising
for this task are production, predation and protection, where predation is un-
derstood to comprise all forms of taking away things or resources from a person
against that person’s will, and protection means to protect own′s own posses-
sions, resources and body. The proportions in which members engage in these
activities may be used to draw distinctions between different forms of social or-
ganization - whether historical-empirical or merely conceptual. For example, in
a society of slave holders (Knight, 1977) the slaves do not engage in protection,
whereas the peasants in a peasant society do so. Conversely, the slave owners
spend quite some effort on protection, much more than does a leader in a rural
society. More precisely, the approach consists of looking at the proportions of
time which a person devotes to production, predation and protection, to use
these proportions for a classification of the persons, and to analyze the rela-
tive sizes of the classes to obtained. A person spending almost all her time
on production thus may be classified as a producer,3 while it is not easy to
find a natural label for, say, a person devoting her time equally to production,
predation and protection eventhough the kind of such persons is determined
theoretically in a precise way.

This approach may be pursued by starting from simple, ‘institution-free’
economic models in which the optimal or equilibrium distribution of persons’
times is studied in a game theoretic setting. We here generalize a simple one-
good, two-agent hobbesian model studied in (Houba & Weikard, 1995) which
deals with the optimal allocation of actors’ times on the three kinds of activities:
production, predation, and protection, this is why we speak of a 3P model. On
the basis of his utility function which depends on the amounts of time all actors
spend on each activity, each single actor tries to optimally distribute a fixed,
total amount of time among the three types of activities. As game theoretic
analysis becomes very difficult, if not practically impossible, for numbers of
actors greater than two, simulation offers itself as the natural tool to be used.

We introduce the generalized 3P model, and describe how this is simulated
in a discrete event setting. We then explore its potential by investigating the
connections between actors’ abilities to produce, predate and protect, the per-
centages in which these abilities are present in the population, and the times
which actors spend on the three activities. The connections we found in different
simulations are critically discussed in the light of corresponding, presystematic
expectations. We describe some expected, ‘nice’ results, but also some unex-
pected results indicating deficiencies of the present, basic model. In spite of
these negative results we believe that the model has a great potential for mod-
ifications and refinements.

3In the present paper we will use another definition of producers, namely in terms of their
abilities to produce.
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A first positive result is that predation is ‘robust’ in the sense that actors
who are best at predating (i.e. whose ability for predating exceeds that for
production and protection) in most cases spend almost all their time on preda-
tion. Moreover, the time spent on predation increases sharply with an increase
of the ability to predate, and does not much depend on variation of the other
abilities. This finding points to a natural incentive which theoretically could
back Hobbes’ state of nature. A second positive result is that production time
also increases with an increase of the ability to produce, though the degree of
increase varies with other parameters, in particular with the coefficients for the
other abilities and the percentage of producers in the population. This also
indicates a natural incentive, and the variability of increase opens the way for
studying the systematic effects of other, ‘external’ parameters on the incentive
to produce.

Negatively, we found that protection time in most cases does not monoton-
ically increase with protection ability. A first interpretation is that the ability
for protection is dominated by the other two abilities, and thus not really an
independent variable. This interpretation is also supported by the intuitive
observation that the abilities for predation and protection in a pre-historic en-
vironment are closely related to similar kinds of bodily skills and strengths.

A second negative result is that in simulations where abilities were lognor-
mally distributed in the population, we were not able to produce patterns of
time proportions corresponding to presystematic, real-life expectations. For ex-
ample, a ‘real-life’ state would obtain when there are 66% of producers and 34%
of predators such that producers spend all their time on production and preda-
tors split their time on predating and protection. Even a systematic search
algorithm could not find ability coefficients which through simulation would
produce such distributions. This indicates that the form of the utility functions
used in the model is still too rigid and restricted.

1 The Basic Hobbesian 3P Model

It may seem strange to start an analysis of social institutions by modelling an
institution-free hobbesian world. But as noted by (Wolff, 1996) in his analysis
of Hobbes’ state of nature, ”To understand why we have something, it is often
a good tactic to consider its absence”. Hence, one way to examine how social
institutions emerge and what type of social interactions (exchange based vs.
power based) underlie these institutions, is to start from an institution-free
setting of which Hobbes’ account is perhaps the most famous example.

Since Bush’s pioneering work (Bush, 1976) there have been numerous arti-
cles and books4 devoted to the modelling of conflictual anarchy of the hobbesian
variety.5 We here study a simple representative of the hobbesian variety of mod-

4A critical review of these models is found in (Albert, 1999).
5We are reluctant to use the term ‘anarchy’ in connection with conflictual models opposing
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els in order to show how such a model, when generalized to a multi-agent com-
putational world, may give rise to interesting features that could (practically)
not be found by paper and pencil. However since, as pointed out by (Binmore,
1998), computer simulations are not a substitute for deductive reasoning based
on sound theoretical microeconomics or game theory we shall first give a brief
account of the theoretical model underlying our multi-agent simulations.

In the hobbesian world, there are no property rights or social norms to
regulate agent interactions. In order to survive in such a world, individual
agents undertake three basic types of activities: they produce, they use force to
steal (predate) and they protect themselves against the predatory activities of
others.

People are not equal in their abilities for doing so. Some are stronger than
others, some are better at producing than at stealing. Depending on their
relative abilities individuals produce, steal and protect themselves by equating
the marginal returns of these three basic activities. The results of an actor’s
marginal calculus depend on the behavior of the other agents with whom she
interacts. In most approaches this interactive behavior is modelled by Cournot-
Nash type assumptions but a few models use Stackelberg type (leader-follower)
assumptions.

Adopting the two-persons generalization of (Houba and Weikard, 1995) of
Bush’s original model, let us consider two persons i, j. Let Pi1, Pi2, Pi3 be the
production, predation and protection functions of individual i (those of j are
obtained by interchanging i and j). Pip specifies the utility which person i de-
rives from production (p=1), predation (p=2) and protection (p=3). There is
only one good which is produced, and taken away by predators.

(1) Production: Pi1 = f1(ai1, ti1)
(2) Predation: Pi2 = f2(ai2, ti2, Pj1, Pj3), i 6= j
(3) Protection: Pi3 = f3(ai3, ti3),

where the aip > 0 are individual parameters for, respectively, the productive
(p=1), predatory (p=2) and protective (p=3) capacities of individual i, called
abilitiy coefficients in the following, and tip denotes the time devoted by indi-
vidual i to activity number p. Whereas the production and protection functions
(1 and 3) depend only on i’s own parameters and variables, the predation func-
tion (2) includes arguments that do not only depend on i’s own capacities and
time devoted to predation. The predation function also depends on the other
person’s time and capacities devoted to production and protection. The more

bandits (predators) to peasants (producers) because this tends to confirm the widespread
prejudice that anarchy implies fighting or a hobbesian state of nature. Originally, anarchy only
means absence of domination. Though predation, robbery and exploitation are compatible
with the absence of domination, they are by no means implied by such absence, as Hobbes
made us believe. See (Flap, 1985) for a counter example. The hobbesian state of nature
in which everyone fights everyone is only one among many other conceptual - including less
frightening - alternatives. See also the comments of (Dowd, 1997) on Hirshleifer’s model
(Hirshleifer, 1995) of conflictual anarchy.
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j produces the more i can steal from him, but the more j protects himself the
more costly is it to steal from him.

Each individual k has an overall utility function Uk it seeks to maximize. A
simple form for Ui suggested by (Houba & Weikard, 1995) is this:

(4) Ui = Ui(ti1, ti2, ti3, tj1, tj2, tj3) = Pi1 + Pi2 − Pj2, j 6= i

Thus Ui is equal to what i gets out of producing (captured by Pi1) plus what she
gets out of stealing from j (captured by Pi2) minus what j gets out of predating
on i (captured by Pj2).

In (Houba & Weikard, 1995) the functions f1, f2 and f3 are generally speci-
fied as follows. For k = i, j,

(7) fk1(ak1, tk1) = ak1tk1 and fk3(ak3, tk3) = ak3tk3
fi2(ai2, ti2, Pj1, Pj3) = ai2(ti2)αiPj1(1− Pj3), and
fj2(aj2, tj2, Pi1, Pi3) = aj2(tj2)αjPi1(1− Pi3).

Using (7) we obtain the following general expressions for Ui and Uj .

(8) Ui(ti1, ti2, ti3, tj1, tj2, tj3) = ai1ti1 + ai2(ti2)αiaj1tj1(1− aj3tj3)−
aj2(tj2)αjai1ti1(1− ai3ti3),

Uj(tj1, tj2, tj3, ti1, ti2, ti3) = aj1tj1 + aj2(tj2)αjai1ti1(1− ai3ti3)−
ai2(ti2)αiaj1tj1(1− aj3tj3).

Each actor k seeks to maximize his utility subject to the constraint that tk1 +
tk2 + tk3 ≤ T where T is the total amount of time available in the period consid-
ered which, for reasons of simplicity, is set equal to 1 for both actors. In other
words, each actor k tries to find an optimal allocation of times (tk1, tk2, tk3).
Clearly, both actors are strategically interdependent since in (8) i’s utility de-
pends on the times chosen by j and conversely. The resulting game can be
analytically solved for two actors.

2 The General Model

We generalize this model to the case of n actors as follows, retaining the as-
sumption of one single good that is produced by everyone. Each of the n actors
i (i = 1, ..., n) has a utility function Ui depending on the 3n times which all
actors spend on the three activities: production, predation and protection. For
each i, the times i spends on production, predation and protection, respec-
tively, are denoted by t1i , t

2
i and t3i . Thus i’s distribution of time on the three

activities is given by ~ti = (t1i , t
2
i , t

3
i ) and i’s utility function may be written as

Ui = Ui(~t1, ..., ~tn). When the time distributions of the other actors j, j 6= i, are
held constant, we simply write Ui = Ui(~ti). We assume that i’s utility function
has the following form

(9) Ui(~t1, ..., ~tn) = ai1ti1
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+ ai2(ti2/(n− 1))αiΣj(aj1tj1(1− aj3tj3))
−min(1, (Σjaj2(tj2/(n− 1))αj ))ai1ti1(1− ai3ti3)

where 0 < αi < 1, 0 ≤ ai1, ai2, ai3 and ai1 + ai2 + ai3 = 1 for i = 1, ..., n. The
ability coefficient aip expresses the ‘ability’ or ‘efficiency’ with which actor i
performs activity number p(p=1,2,3 for production, predation, protection), and
tip is the time i spends on activity p. The three components of Ui in (9) may
be interpreted as follows. The first component ai1ti1 represents the amount of
the single good which i produces (or the utility she derives from this amount),
depending on her productive ability ai1 and the time ti1 she spent on production.

The second component may be best understood if we rewrite it as (n −
1)[ai2(ti2/(n − 1))αi(1/(n − 1))Σjaj1tj1(1 − aj3tj3)]. ai2(ti2/(n − 1))αi is the
‘weight’ of i’s activity of predating when i predates one of the n other actors, on
the assumption that i splits his ‘predation time’ equally on all other actors. The
average, ‘non-protected’ production of some actor thus predated by i is (1/(n−
1))Σjaj1tj1(1 − aj3tj3). So ai2(ti2/(n − 1))αi(1/(n − 1))Σjaj1tj1(1 − aj3tj3) is
i’s utility from predating one ‘average’ fellow actor. In order to obtain i’s total
utility this expression has to be taken n− 1 times.

In the third part, (tj2/(n − 1))αj gives the ‘size’ or ‘weight’ of that part
which j can take away from i’s non-protected product ai1ti1(1− ai3ti3) on the
assumption that j spends her ‘predation time’ tj2 equally on all other actors.
Thus the third part refers to the sum of all parts which are taken away from i’s
non-protected product by all the other actors. Since in the case of more than
two actors the sum of all ‘weights’ may be greater than 1 we have to take the
minimum of this sum and 1 in order to prevent a change of sign in the third
component.

As an analytic treatment of these general equations is very difficult, if not
practically impossible, the best way to proceed is by simulation. We use a
discrete event simulation shell called SMASS (Sequential Multi-Agent System
for Social Simulation) written in SWI-PROLOG (Balzer, 1999), (Wielemaker,
1993,1996). This shell executes simulation runs over a fixed number N of pe-
riods such that in each period, each actor is called up for action exactly once.
The task of implementation in this shell reduces to the formulation and imple-
mentation of a rule of behavior according to which each actor acts when called
up in a period T .

3 The Simulation

As the above analytic model is static, we have to find a way using a dynamical
simulation in order to obtain the static distributions of actors’ times devoted
to the three different activities. This is done as follows. The model’s total time
interval which is captured in one simulation run, is represented by the number
N of all periods over which the simulation is run. Assuming that each actor in
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each period acts just once we can count the numbers m1,m2,m3 of periods in
which he produces, predates, or engages in protection, so N = m1 + m2 + m3.
We identify these numbers m1,m2,m3 with the times t1, t2, t3 an actor spends
on the three activities in the solution of the analytical model.

A second problem is to formulate a rule of behavior expressing the maxi-
mization assumptions which in the analytic model are applied to the equations
(1)-(4) and (5) and (6) above. In principle, one could try to just let each actor
solve the above equations and distribute her time according to that solution.
This is impractical, however, because we consider more than two actors, and
for larger numbers we simply wouldn’t know how to solve the equations. We
therefore formulate a different basic rule of behavior as a substitute for the
assumptions of the analytic model.

To this end during the course of the simulation a ‘history’ is built up record-
ing in each period T the numbers of periods every single actor spent on each of
the three activities up to the present period T . Thus if actor i is called up in pe-
riod T her history ~hi,T will consist of three numbers ~hi,T = (hi1,T , hi2,T , hi3,T )
such that hi1,T + hi2,T + hi3,T = T and each hip,T is the nmuber of periods
in which i performed activity number p(p = 1, 2, 3). Such a history gives the
distribution of the times i spent on the three activities.

Instead of the utilities Ui(~t1, ..., ~tn) derived from the ‘final’ proportions of
times we now may consider utilities derived from the relative proportions of
times spent up to a given period T , i.e. utilities depending on the actors’
histories up to T

Ui(T ) = Ui( ~h1,T , ..., ~hn,T ), where ~hi,T = (h1
i,T , h

2
i,T , h

3
i,T )

We apply the following rule of behavior. An actor i in period T calculates
the marginal utilities for each of the three activities, and chooses that activity
which yields highest marginal utility. The marginal utilities are those which
actor i would derive from spending one more period on production, predation
or protection, given that up to period T he spent the times (h1

i,T , h
2
i,T , h

3
i,T ) on

these activities. i’s marginal utility for production in period T is thus defined
by

(10) Ui( ~h1,T , ..., (h1
i,T + 1, h2

i,T , h
3
i,T ), ..., ~hn,T )− Ui( ~h1,T , ..., ~hn,T ).

The marginal utilities for predation and protection are obtained in the same
way by adding in (10) one period to h2

i,T and h3
i,T , respectively.6

In (10) the other actors’ histories enter in the calculation of i’s marginal
utilities; these are taken as they are found at the time of execution in period
T .7

In the analytical model a solution or state of equilibrium is a list of time
distributions (~t1, ..., ~tn) (a ‘state’) satisfying a condition of maximality or equi-

6As periods are represented by integers, the natural unit here is 1.
7This means asynchronous updating.
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librium. In the simulation such a state corresponds to the actors’ final histories
( ~h1,N , ..., ~hn,N ) where N denotes the total number of periods for which the simu-
lation is run. While the simulation is running, the histories ~hi,T steadily change
when T grows from 1 to N . However, we can say that the system in state
( ~h1,T , ..., ~hn,T ) has become stable if the fractions hip,T ′/T ′ do not change sig-
nificantly for all T ′ such that T ≤ T ′. For instance, when the final distribution
of i’s time is (0.5,0.5,0) - i.e. i spent half of her time on producing and half
of it on predating - then for N = 100, ~hi,N = (50/100, 50/100, 0). When the
system has become stable, say in period 70, then ~hi,70 = (35/70, 35/70, 0) and
these fractions will show only insignificant deviations for T > 70. As the system
operates with integers, they cannot remain strictly identical because, say, for
N = 100, in each period one of the history’s components will be increased by
1/100.

The states which are stable in this sense may be taken as the analogues of
analytic solutions. All simulations were run for 100 periods, and a stable state
was reached when deviations were allowed up to ε = 0.02. The stable state in
most cases was reached between periods number 60 and 80.

4 Simulation Results

We performed a number of simulations in order to explore the space of possibili-
ties given by variations in the parameters: numbers of actors, ability coefficients,
exponents, and initial distributions of predators and producers in the popula-
tion. This is a huge space and it does not seem a good idea to try to explore
it fully systematically. We varied several items in more systematic fashion, but
only so within relatively narrow boundaries. Each simulation was repeated ten
times with the same initial data. The results reported here are the mean values
over these repetitions, deviations from these means were usually in the order of
0.01 or less.

Even within a homogenous population of completely identical actors, slightly
different results are observed for different actors. This effect is due to the multi-
agent character of the simulation in which it makes a difference, for instance,
whether in a period one of the few predators is called up at the beginning or
towards the end of the period, i.e. before most other actors have chosen their
activities and acted, or after that. However, these individual differences usually
are not significant, deviations being smaller than 0.02, and usually much smaller.
For this reason, we do not differentiate in the following description between
single actors, and just report the results for one arbitrary, representative member
of each sub-population.8

8As a warming up exercise we simulated the Houba-Weikard 2-actor model with the coef-
ficients [2, 0, 1] for the producer and [1, 1, 0] for the predator. This yields the expected Nash
equilibrium at (0, 0.3968, 0.2063) - the remaining times being uniquely determined by the time
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In a first series of simulations we used ability coefficients that are lognormally
distributed in the population. As these coefficients consist of three components
whose interdependency is difficult to judge empirically we used a mix of two
different random processes to create them. We first created lognormally dis-
tributed numbers bi - one for each actor i - within the interval [0, 1]. We then
split the ‘rest’ 1 − bi(≥ 0) randomly into two parts bi = ai + ci, and used
(ai, bi, ci) as coefficients of actor i.

Defining ‘producers’ i as those actors whose ability for producing, ai2, is
strictly greater than that for predating, ai2, and calling all other actors ‘preda-
tors’, the population split up into x% of producers and (1-x)% of predators.
With varying numbers of actors x varied in the interval [40, 60].

The means of the ability coefficients and the time profiles did vary with
variations of the number of actors, but this effect is mainly due to the fact that
for a different number of actors, the ability coefficients are newly created in the
random way described earlier. Table 1 summarizes some results.

Table 1

number of actors 10 50 100
percentage of 50 42 43
producers . . .
mean producer: . . .
ability coeffs (.36,.10,.53) (.51,.14,.33) (.46,.13,.40)
time profiles (.55,.17,.27) (.23,.57,.18) (.18,.64,.17)
variances (.007,.041,.021) (.035,.174,.052) (.038,.180,.060)
of time . . .
mean predator: . . .
ability coeffs (.18,.58,.22) (.16,.59,.23) (.14,.60,.25)
time profiles (.13,.86,0) (.01,.98,0) (.01,.98,0)
variances (.009,.009,0) (0,0,0) (0,0,0)
of time . . .

Remarkably, in populations of more than 40 actors, a ‘mean producer’ spends
more time on predating than on producing. This means that several single
producers, i.e. actors who are more able to produce than to predate, nevertheless
spend more time on predation, which, for them, is the inferior activity. This
result is prima facie at odds with the assumption of rationality underlying the
model. However, we can interpret it as showing that the incentive for predation
which is incorporated in the form of the utility function is much stronger than
that for production so that it surpasses the prima facie incentive given in terms
of the ability coefficients.

By contrast, the ‘mean predators’ do not spend much time on producing
eventhough they have a non-negligable coefficient for production. This confirms

constraint - for the predator, which in this case also can easily be computed by hand.
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the previous interpretation. Moreover, the ‘mean predators’ do hardly spend
any time on protection, which in many simulation means that no single predator
does so. This outcome conflicts with the intuition - external to the model - that
predators also should predate on their ‘fellow’ predators. Given the high per-
centage of predators in the population (often more than 50%), one would want
to see a substantial amount of time spent by predators on protecting themselves
against each other. However, this incentive is not expressed in the model. The
third, negative part of the utility function in (9) depends multiplicatively on the
actor’s own product (ai1ti1) which is negligible for predators. According to (9)
a predator spending no time on production has nothing to protect. In reality,
even in the basic case in which all products - whether produced or robbed -
are consumed in the same period, there is the possibility of one predator tak-
ing away from another one the good which the latter just robbed from a third
person.

Looking at how each single time component tr (e.g. the time spent on
predation, r=2) depends on a single ability coefficient as (e.g. the coefficient for
production, s=1), we arrange the coefficients that are present in the population
in an increasing order so that for the set {i1, ..., in} of actors we obtain a series
as(i1) < ... < as(in). When we plot the corresponding time ts(ij) against each
such coefficient as(ij) the dependence (in a population of 30 actors) can be
graphically depicted as in figure 1.

Figure 1
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the connections ( 1 = strong and regular, 2 = weak and regular, 3 = irregular)
all the dependencies are summarized in table 2.

Table 2 increasing coefficient for

. production predation protection
time spent on . . .
production +,2 −,1 +,3
predation −,2 +,1 −,3
protection +,3 −,1 +,3

These connections do not change when they are restricted to the two subpopu-
lations of producers and predators.

The absence of a regular increase of protection time with an increase of pro-
tection ability (even in the subpopulation of producers) we find unsatisfactory.
As producers’ product increases over time (in the simulation), and as there are
many predators, producers should have a strong incentive for protection which
is also in accordance with the form of the utility function (9).

In these simulations on might suspect that the results depend on the initial
creation of lognormally distributed ability coefficients. In order to control for
this we conducted a second series in which we focused on one ability coefficient.
When this was fixed, the percentages of producers, predators and protectors
(defined in terms of abilities), as well as all the other coefficients were varied
randomly. The random creation of the ‘other’ parameters was repeated 20
and 50 times. Doing the simulation for different values of the focused ability
coefficient, like 0.2, 0.25, 0.3, ..., 1, and plotting the times spent on one activity
against the focused coefficient, we obtained qualitatively the same results as in
the first series. Figure 2 shows some dependencies for the series 0.2, 0.25, 0.3,
..., 1 of coefficients number s on the x-axis and times number r on the y-axis.

Figure 2
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In a third series, we investigated the sensitivity of the model in dependence
of the absolute numerical values of the ability coefficients. Instead of normal-
ized ability coefficients (adding up to 1) we used larger numbers, and studied
the system’s behavior for different, fixed sets of coefficients and proportions of
producers and predators. We started with normalized coefficients, multiplied
them by 10, 20, 30 and gauged the (1-...) expressions in (9) to the absolute val-
ues, e.g. when using coefficients adding up to 10, the ‘1’ was replaced by ‘10’.
In a population of 20 actors we ran all combinations of coefficients (0.8,0,0.2),
(0.4,0.4,0.2), (0.1,0.1,0.8) for producers, (0,1,0), (0,0.7,0.3), (0.3, 0.4, 0.3) for
predators and percentages 100, 80, 60, 40, 20 of producers in the population.

There was no significant variation of predators’ times in dependence on the
absolute sizes of ability coefficients, and variation for producers was relatively

13



small, never exceeding 30%. We may say that the model is moderately robust
with respect to the absolute sizes of ability coefficients.

We also varied the exponents αi attached to predation times in equation (9).
In the earlier simulations these exponents had been uniformly set equal to 1/2.
In a fourth series the exponents 1/2 were replaced by smaller and larger values
( 0.2, 0.4, 0.8, 1 ), but still each actor’s utility function was calculated with the
same exponents. Running the simulation in the setting of series 3 above we found
that the times of predators are hardly affected by changes of the exponents.
The main effect observed for producers was that when their percentage in the
population decreases below a threshold, they split their times nearly equally
on production and predation. The only effect of varying exponents is that this
threshold decreases with growing exponent, but also with decreasing predating
ability of the predators. In Table 3 we show some results. In the entries x/y, x
denotes the production time and y the predation time of a producer.

Table 3
. exponents . .
. 0.2 0.4 0.8 1
ability coeffs . . . .
producer (.8,0,.2) . . . .
predator (0,1,0) . . . .
percentage of . . . .
producers . . . .
100% 1/0 1/0 1/0 1/0
80% .5/.5 .5/.5 1/0 1/0
60% .5/.5 .5/.5 1/0 1/0
40% .5/.5 .5/.5 .7/.3 1/0
20% .5/.5 .5/.5 .5/.5 .9/.1

ability coeffs . . . .
producer (.8,0,.2) . . . .
predator (.3,.4,.3) . . . .
percentage of . . . .
producers . . . .
100% 1/0 1/0 1/0 1/0
80% .8/.2 1/0 1/0 1/0
60% .5/.5 .8/.2 1/0 1/0
40% .5/.5 .5/.5 1/0 1/0
20% .5/.5 .5/.5 1/0 1/0

In a final series we tried to reproduce ‘reasonable’ empirical time distributions
as found in existing populations. For example, in a slave holder society, a first
guess for time distributions would be (1,0,0) for slaves (which form, say 40
percent of the population), and (0,0.6,0.4) for non-slaves (making up 60 percent
of the population). That is, slaves spend all their time on production, while
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non-slaves split their time on 60% of predation and 40% of protection. We
started a search program which tried to find ability coefficients for which the
time distributions resulting in a simulation with such coefficients fitted with the
times and percentages fixed beforehand.

This resulted in complete failure. For none of three ‘reasonable’, initial time
distributions and percentages the program found coefficients such that the sim-
ulation results would fit with the given times and percentages. Even if we admit
that the search algorithm used is perhaps very inefficient this indicates that the
model in its present form is not sufficiently flexible.

Conclusion

First simulations with a multi-agent model in which actors optimize the time
distributions for production, predation and protection yield insight in the ratio-
nal, non-institutionalized incentives for engaging in each of these activities. On
the one hand, predation and production times increase with the actors’ respec-
tive abilities which points to a basic, natural incentive to engage in production
and predation. On the other hand, protection time does not systematically vary
with either of the three ability coefficients which indicates that perhaps it is not
an independent variable.

We were not able with the present model to produce ‘real life’ time distribu-
tions and percentages of producers and predators. This may have two reasons.
First, the model’s basic equation (9) may be too rigid or too restricted. In
future research we will use variations of the model with different exponents and
different overall forms of (9) to find ‘solutions’ which reproduce given, plausi-
ble time distributions and percentages. In particular, the absence of predation
among predators in (9) has to be removed.

A second reason for failure may be the neglect of institutional features.
Broadly speaking, institutions seem to produce and to stabilize certain pat-
terns of time distributions and percentages which do not naturally occur in an
institution-free state. We hypothesize that the present model allows to incor-
porate some such institutional features, which we hope to find and to inclcude
in the picture.
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